

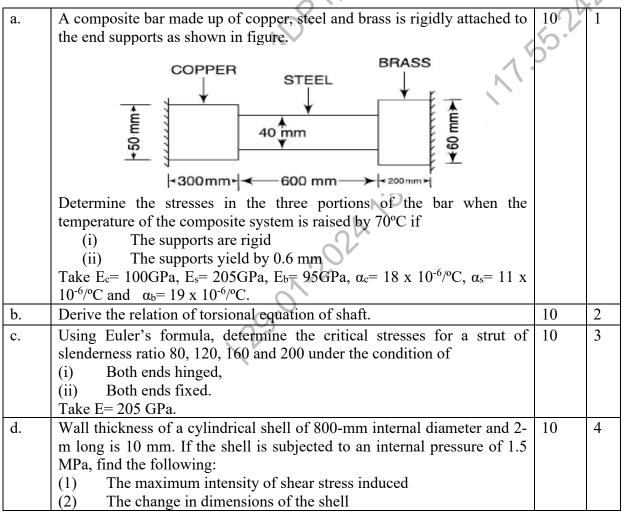
Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24 **STRENGTH OF MATERIAL**

TIME: 3 HRS

M.MARKS: 100


Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	Briefly explain Poisson's ratio and Bulk modulus.	2	1
b.	What is impact load and write formula for impact stress?	2	1
c.	Why the strain at the common interface is equal in a composite beam?	2	2
d.	What is the importance of section modulus of a beam?	2	2
e.	What is spring? What are different types of spring?	2	3
f.	State the effect of eccentric loading on short column.	2	3
g.	What is 'Shrinkage allowance' in compound cylinders?	2	4
h.	In case of gas as a fluid, which type of container will be used to contain the fluid?	2	4
i.	Briefly explain unsymmetrical bending.	2	5
j.	What assumptions are taken in the analysis of shear center in beams?	2	5
	SECTION B		Z
2.	Attempt any <i>three</i> of the following:	N	\mathcal{N}

SECTION B

2. Attempt any three of the following:

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24 STRENGTH OF MATERIAL

TIME: 3 HRS

M.MARKS: 100

	Take E= 205 GPa, Poisson's ratio= 0.3		
e.	With the help of Winkler batch theory, derive the value of factor h2 for:	10	5
	(i) Circular section		
	(ii) Triangular section		

SECTION C

3. Attempt any *one* part of the following:

PAPER ID-310892

a.	For a given loading conditions the state of stress in the wall of a cylinder	10	1
	is expressed as follows :		
	(i) 85 MN/m ² tensile,		
	(ii) 25 MN/m^2 tensile at right angles to (i), and		
	(iii) Shear stresses of 60 MN/m^2 on the planes on which the		
	stresses (i) and (ii) act; the shear couple acting on planes		
	carrying the 25 MN/m^2 stress is clockwise in effect.		
	Calculate principal stresses and principal planes.		
b.	The load on a bolt consists of an axial pull of 20 kN together with a	10	1
	transverse shear of 10 kN, Calculate the diameter of bolt according to :		C
	(i) Maximum total strain energy theory, and		L B
	(ii) Maximum shear strain energy theory.		
	Take elastic limit in tension 280 MPa, factor of safety=3 and Poisson's	1	
	ratio = 0.3	<u> </u>	
4.	Attempt any <i>one</i> part of the following:	5.	
a.	A timber beam 80 mm wide and 160 mm deep is reinforced with two	$\overline{P0}$	2
	steel plates 5 mm thick and 60 mm wide on top and bottom. If bending		
	moment of 800 N-m acts at section of this beam, calculate the magnitude		
	of maximum fiber stresses in tensions and compression in wood and		
	steel. Assume $E_s/E_W = 15$.		
b.	Compare hollow shaft and solid shaft.	10	2
	(i) On the basis of Strength.		
	(ii) On the basis of weight.		
5.	Attempt any <i>one</i> part of the following:		<u> </u>
a.	What assumptions are made in the analysis of columns by Euler's	10	3
	buckling theory? Derive an expression for Euler's crippling load when		
	both ends of column are hinged.		
b.	A closed-coiled helical spring having 24 turns is made of 8-mm diameter	10	3
	wire. The mean diameter of the spring is 80 mm and it carries a load of		
	250 N. Determine the shear stress developed, the deflection and the		
	stiffness of the spring. Take, G=84 GPa.		
		•	

6. Attempt any *one* part of the following:

b. A steel tube of 120-mm external diameter is shrunk on another steel tube 10	a.	Deduce the general equations for circumferential and radial stresses developed in thick cylinders along with assumptions.	10	4
is 80 mm. Initial difference of diameters at the junction before shrinking was 0.04 mm. Determine	b.	A steel tube of 120-mm external diameter is shrunk on another steel tube of 48-mm internal diameter. After shrinking, the diameter at the junction is 80 mm. Initial difference of diameters at the junction before shrinking	10	4

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24 STRENGTH OF MATERIAL

TIME: 3 HRS

M.MARKS: 100