

Subject Code: KEE502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	Attempt <i>all</i> questions in brief.	2 x 10	= 20	
Q no.	Question	Marks	CO	
a.	Explain the properties of signal flow graph.	2	1	
b.	Define transfer function of a control system.	2	1	
с.	Mention the effect of ξ on second order system performance for unit step input when (i) $\xi = 0$, (ii) $0 < \xi < 1$, (iii) $\xi = 1$, (iv) $1 < \xi < \infty$	2	2	
d.	What are the standard test signals? Explain.	2	2	
e.	On the basis of bounded input bounded output stability define stable system and unstable system.	2	3	
f.	List the disadvantages of Routh-Hurwitz criterion.	2	3	
g.	Describe the resonant peak and resonant frequency.	2	4	
h.	Explain the minimum and non-minimum phase system.	2	4	N
i.	List the advantages of state variable approach for the analysis of a control system.	2	5	3
j.	Define state space and state trajectory.	2	5	

SECTION A

TION B SEC

1 11 f the fellow

2.	Attempt any <i>three</i> of the following:	10x3=	30
a.	Determine the transfer function for the block diagram given below by	10	1
	Mason's gain formula.		
	→ G ₄ +		
	H ₂		
b.	Explain the following terms in detail.	10	2
	a) PD controller		
	b) PI controller		
c.	The open loop T.F. of certain unity feedback system is	10	3
	$G(s) = \frac{K(s+1)}{s(s-1)(s+6)}$ Determine-		
	s(s) = s(s-1)(s+6)		
	i. Range of K for stability		
	ii. Marginal value of K		
	iii. Location of roots for marginal stability		
d.	What is mapping theorem? Also explain the Nyquist stability criterion	10	4
	to determine the stability of a control system.		

1 | Page

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 100

e.	Determine the transfer function from the state model given below-	10	5
	$\begin{bmatrix} \bullet \\ x_1 \\ \bullet \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$		
	$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$		

SECTION C

3.	Attempt any one part of the following:	10x1=	10	_
a.	What do you understand by open loop and closed loop control systems?	10	1	
	Discuss the comparative statements between open loop and closed loop			
	control systems. Also explain the practical examples of open loop and			
	closed loop control systems.			
b.	Determine $C(S)/R(S)$ for the following system using block reduction	10	1	
	method.			N
	$\begin{array}{c} R(s) \\ \hline \\ $	5.2	2.	5

	OV A		
4.	Attempt any one part of the following:	10x1 =	10
a.	Define peak time and peak overshoot of a second order control system	10	2
	and derive the formula for the same with unit step input.		
b.	The maximum overshoot for a unity feedback control system having its	10	2
	forward path transfer function as $G(s) = \frac{K}{s(sT+1)}$ is to be reduce from		
	75% to 25%. The system input is a unit step function. Determine the		
	factor by which K should be reduced to achieve the above reduction.		

t of the following:

10-1 10

5.	Attempt any one part of the following:	10x1 =	10
a.	What do you mean by the root locus? State and explain all the steps used	10	3
	for drawing the root locus plot.		
b.	Sketch the root locus plot and comment on stability for the system when	10	3
	open loop transfer function is given by-		
	$G(s)H(S) = \frac{K}{K}$		
	$G(s)H(3) = \frac{1}{s(s+2)(s+4)(s+8)}$		

6.	Attempt any <i>one</i> part of the following:	10x1=10	
a.	Draw the Nyquist plot and determine the stability of the system whose	10	4
	open loop transfer function is given as.		
	$G(s)H(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$		

Printed Page: 3 of 3 Subject Code: KEE502

PAPER ID-310683

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

CONTROL SYSTEM

TIME: 3 HRS

M.MARKS: 100

b.	Draw the Bode plot for the open loop T.F. $G(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$	10	4
	and from the graph determine- (i). Gain cross-over frequency, (iii). Gain margin,(ii). Phase cross-over frequency (iv).Phase margin, (v). Comment on the stability of the system		

7.	Attempt any one part of the following:	10x1=	10	
a.	What are the different types of compensators used in control systems? Also show that the frequency corresponding to the maximum lead angle (ω_m) is the geometric mean of the two corner frequencies of the lead compensator.	10	5	
b.	Examine the controllability and observability of a system with	10	5	
0.	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$	10	5	
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 5 & 1 \end{bmatrix}$		C	5
			<u> </u>	
	R	0	X	
		5.		
		$\mathbf{S}_{\mathbf{r}}$		
	Q'			
	×5.			
	N			
	N.A.			
	24			