

BTECH

(SEM V) THEORY EXAMINATION 2023-24

INTEGRATED CIRCUITS

TIME: 3 HRS

M.MARKS: 100

 \mathcal{C}

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

	SECTION		
1.	Attempt <i>all</i> questions in brief.		
Q no.	Question	Marks	CO
a.	Write the device parameters for IC 741.	2	1
b.	List the advantages of Widlar current mirror used in IC 741.	2	1
c.	Define 3-dB points in frequency response.	2	2
d.	Discuss the advantages of an instrumentation amplifier.	2	2
e.	Differentiate between voltage comparator and zero crossing detector.	2	3
f.	Analog multiplier can be used as phase detector. Justify the statement.	2	3
g.	Differentiate between PUN and PDN.	2	4
h.	Discuss the advantage of master salve flip flop over simple flip flop.	2	4
i.	Define voltage-controlled oscillator as a system.	2	5
j.	Define Lock range and capture range.	2	5

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	CO
a.	Calculate the voltages and currents for different transistors used in the input stage of IC 741 through DC analysis of it.	10	1
b.	Derive of impedance offered by generalized impedance converter. Also calculate the values of components to simulate an inductor of $2 mH$ using it.	10	2
с.	Explain the operation of astable multivibrator using operational amplifier with necessary mathematical expressions and waveforms. Also design a square wave generator using it of frequency 5 <i>KHz</i> .	10	3
d.	Discuss the implementation of D flip flop using CMOS inverter along with its master salve configuration.	10	4
е.	Explain the generation of square and triangular wave of IC 566 with its block diagram and waveforms. Also derive the expression of frequency of generated waveform.	10	5

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Draw the overall small signal model of IC 741 and hence calculate the	10	1
	overall voltage gain provided by IC 741.		
b.	Calculate the small signal resistance between node A & A' for following	10	1
	circuit in terms of device parameters.		

BTECH (SEM V) THEORY EXAMINATION 2023-24 **INTEGRATED CIRCUITS**

Roll No:

TIME: 3 HRS

PAPER ID-310217

4. Attempt any one part of the following:

Q no.	Question	Marks	CO	
a.	Derive the transfer functions of low pass, high pass and band pass filters	10	2	1
	obtained at different nodes of universal active filter or KHN circuit			B
	along with their frequency response. Also calculate the bandwidth of			
	bandpass filter, if quality factor is 25 and center frequency is 2 KHz.	1	いて	
b.	List the properties of V-I and I-V converters. Also discuss the voltage	10	2	
	to current converters with floating and grounded load.	·6·		

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Discuss the logarithmic amplifier. Also discuss its temperature compensation.	10	3
b.	Discuss the triangular wave generation using operational amplifier. Also	10	3
	derive the expression of frequency of generated triangular waveform.		

6. Attempt any *one* part of the following:

6.	Attempt any <i>one</i> part of the following:		
Q no.	Question	Marks	CO
a.	Discuss the realization of clocked SR flip flop using CMOS inverter.	10	4
	Also discuss its simpler implementation using CMOS.		
b.	Implement and verify the followings using CMOS:	10	4
	i. 2 input NAND gate.		
	ii. $Y = \overline{ABC + DE}$		

7. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Discuss the operation of 555 timer IC as astable multivibrator.	10	5
	Determine the duty cycle and frequency of 555 timer astable operation		
	for $C = .01 \mu f$, $R_A = 2.2 K \& R_B = 3.9 K$.		
b.	Explain the working of PLL with its block diagram. Also discuss the	10	5
	various applications of it.		