

Subject Code: KCS502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

COMPILER DESIGN

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	Attempt all questions in brief.	$2 \ge 10 = 20$	
Q no.	Question	Marks	CO
a.	Define bootstrapping in the context of compilers.	2	1
b.	Which phase of compiler is optional and why?	2	1
c.	Explain the concept of shift-reduce parsing.	2	2
d.	Differentiate Parse tree and Syntax tree with an example.	2	2
e.	Define syntax-directed translation schemes.	2	3
f.	What are the two types of attributes that are associated with a grammar symbol?	2	3
g.	Discuss how scope information is represented in a symbol table.	2	4
h.	What is mean by Activation record?	2	4
i.	Discuss two design issues in code generation.	2	5
j.	Explain the concept of global data-flow analysis,	2	5

SECTION A

SECTION B

10x3= 2. Attempt any *three* of the following: Describe the relationship between finite state machines and regular 10 a. 1 expressions. Discuss how regular expressions are used in lexical analysis and pattern matching. For the grammar 10 2 b. $S \rightarrow aAd | bBd | aBe | bAe, A \rightarrow f$, $B \rightarrow f$ Construct LR(1) Parsing table. Also draw the LALR table. Explain the concepts of quadruples and triples in the context of syntax-10 3 c. directed translation. Discuss how they represent intermediate code and support optimization. Describe a simple stack allocation scheme for managing memory during 4 d. 10 program execution. Explain how it is used for storing local variables and managing function calls. Explain the role of a code generator in a compiler. Discuss its 5 10 e. responsibilities and how it translates intermediate code into the target code.

SECTION C

3.	Attempt any one part of the following:	10x1=10	
a.	Given a regular expression $a(b c)^*$, construct the corresponding	10	1
	Nondeterministic Finite Automaton (NFA) that recognizes the language		
	described by the regular expression.		
b.	Check whether given grammar is ambiguous or not. If ambiguous then convert	10	1
	it into unambiguous grammar: E→E+E E*E id.		

Printed Page: 2 of 2 Subject Code: KCS502

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

COMPILER DESIGN

TIME: 3 HRS

M.MARKS: 100

4.	Attempt any one part of the following:	10x1=10	
a.	Check whether the given grammar is LR(0) or not: $S \rightarrow PQy, P \rightarrow Sy x, Q \rightarrow yS$.	10	2
b.	Consider the following grammar for a simple expression language:	10	2
	$E \rightarrow E + T \mid T$		
	$T \rightarrow T * F \mid F$		
	$F \rightarrow (E) \mid id$		
	Consider expression id * (id+id). Apply shift reduce parsing to construct parse		
	tree.		

5.	Attempt any <i>one</i> part of the following:	10x1 = 1	0
a.	Write syntax directed definition for a given assignment statement:	10	3
	$S \rightarrow id=E$		
	$E \rightarrow E + E$		
	$E \rightarrow E^*E$		
	E→-E		
	$E \rightarrow (E)$		0
	E→id		
b.	Explain how syntax-directed translation handles array references within	10	3
	arithmetic expressions.	OV	ζ

6.	Attempt any <i>one</i> part of the following:	10x1=1	0
a.	Define Symbol table? Explain about the data structures used for symbol	10	4
	table.		
b.	Define semantic errors in a compiler. Discuss the challenges associated	10	
	with detecting and handling semantic errors. Provide examples to		
	illustrate semantic issues.		
	1.		

7.	Attempt any <i>one</i> part of the following:	10x1=10	
a.	Consider a basic block with the following three instructions:	10	5
	1. $x = a + b$		
	2. $y = x * c$		
	3. z = y - d		
	Apply common sub expression elimination to optimize the basic block.		
b.	Construct a Directed Acyclic Graph (DAG) to represent the following	10	5
	basic block:		
	1. $\mathbf{x} = \mathbf{a} + \mathbf{b}$		
	2. $y = c - d$		
	3. $z = x * y$		