

				Sub	ject	Co	de: I	KCS	053
Roll No:									

Printed Page: 1 of 2

BTECH (SEM V) THEORY EXAMINATION 2023-24 COMPUTER GRAPHICS

TIME: 3 HRS M.MARKS: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	$2 \times 10 = 20$		
Qno.	Question	Marks	CO	
a.	Why is the slope-intercept form commonly used for representing lines in computer graphics?	2	CO1	
b.	Describe how a point is represented in a computer graphics system.	2	CO1	
c.	Explain the Bresenham line drawing algorithm briefly.	2	CO2	
d.	Discuss the significance of parallel versions of line drawing algorithms.	2	CO2	
e.	How does the Sutherland-Hodgman polygon clipping algorithm work?	2	CO3	
f.	Discuss the significance of text clipping in graphical applications.	2	CO3	
g.	What is a projection in the context of 3-D viewing?	2	CO4	
h.	What role do matrices play in 3-D transformations?	2	CO4	
i.	What are blobby objects in computer graphics?	2	CO5	
j.	What is the significance of specular reflection in rendering?	2	CO5	

SECTION B

2.	Attempt any three of the following:	$10 \times 3 = 3$

a.	Describe a scenario where a random scan display is preferable over a raster scan display. Also, State a key advantage of raster scan displays	10	CO1
	over random scan displays.		
b.	Elaborate the midpoint circle generating algorithm, outlining its	10	CO2
	principles and benefits.		
c.	Define composite transformations and illustrate how they are constructed by combining basic transformations. Explain with examples how multiple transformations are applied successively to achieve a composite transformation.	10	CO3
d.	Discuss various methods used in 3-D clipping. Explain their advantages and drawbacks.	10	CO4
e.	Describe the concept of splines in computer graphics, highlighting their	10	CO5
	use and significance.		

SECTION C

3. Attempt any *one* part of the following: $10 \times 1 = 10$

a.	Explain the function of a video controller in a graphics system.	10	CO1
b.	Discuss in detail the two primary types of computer graphics: vector	10	CO1
	graphics and raster graphics. Compare and contrast their fundamental		
	characteristics, applications, and advantages in various industries.		

4.	Attempt any one part of the following:	10 x 1 =	= 10
a.	Explain the fundamental characteristics of Digital Differential Analyzer	10	CO2
	(DDA) and Bresenham's line drawing algorithms, discussing their		

(DDA) and Bresenham's line drawing algorithms, discussing their respective strengths and weaknesses in rendering lines in computer graphics.

					Pri	intec	l Pa	ge: 2	of 2	
				Sub	ject	Co	de: I	KCS	053	,
Roll No:										

BTECH (SEM V) THEORY EXAMINATION 2023-24 COMPUTER GRAPHICS

TIME: 3 HRS M.MARKS: 100

b.	What are the criteria that should be satisfied by a good line drawing	10	CO2
	algorithm? Explain.		

5.	Attempt any <i>one</i> part of the following:	$10 \times 1 = 10$	
a.	Compare and contrast the Cohen-Sutherland and Liang-Barsky	10	CO3
	algorithms in terms of their computational complexity, efficiency, and		
	handling of various types of clipping scenarios.		
b.	Elaborate on curve clipping techniques in computer graphics. Discuss	10	CO3
	the challenges and methods involved in clipping curves, highlighting the		
	key algorithms used.		

6.	Attempt any <i>one</i> part of the following:	10 x 1 =	<u>= 10 </u>
a.	Explain the stages involved in a typical 3-D transformation pipeline.	10	CO4
b.	Compare and contrast orthographic and perspective projections in 3-D viewing.	10	CO4

7.	Attempt any one part of the following:	10 x 1 =	= 10
a.	Compare and contrast the A-buffer method and the depth buffer method	10	CO5
	in terms of efficiency and complexity.	9%	
b.	Elaborate on the components and calculations involved in the Phong	10	CO5
	illumination model. How does it contribute to realistic rendering?	0	
	29.01.202A, 3: A5: 26 \ 1.11		