

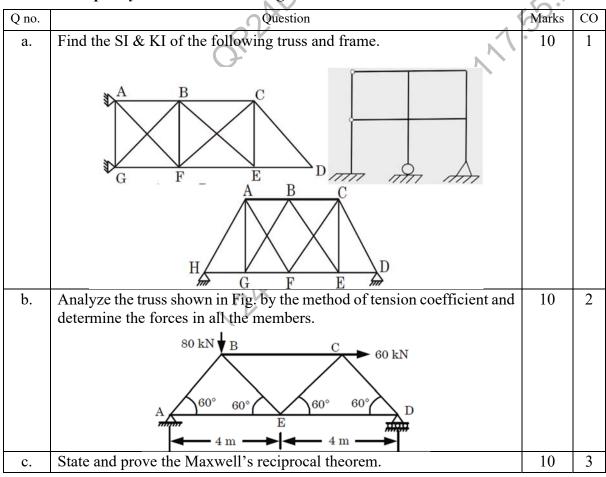
BTECH (SEM V) THEORY EXAMINATION 2023-24

STRUCTURAL ANALYSIS

TIME: 3 HRS

M.MARKS: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.


SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	What do you understand by the term structural load?	2	1
b.	Discuss the cable.	2	1
c.	What do you mean by compound and complex space truss?	2	2
d.	What are the various types of supports?	2	2
e.	Define the term strain energy or resilience of the member.	2	3
f.	Write the statement of Castigliano's first theorem.	2	3
g.	What do you understand by influence line?	2	4
h.	State Muller-Breslau's principle for determinate structure.	2	4
i.	What are the different types of arches?	2	5
j.	Define horizontal thrust.	2	5
			N
	SECTION B	1	N

SECTION B

2. Attempt any *three* of the following:

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

STRUCTURAL ANALYSIS

TIME: 3 HRS

PAPER ID-310672

M.MARKS: 100

d.	A single load of 150 kN moves on a girder or span 30 m. Construct the influence line for shear force and bending moment for a section 10 m from the left support.		4
e.	A three hinged semicircular arch of radius R carries a UDL of w per run over the whole span. Find Horizontal thrust & Location and magnitude of maximum bending moment.	10	5

SECTION C

Attempt any one part of the following: 3.

Q no.	Question	Marks	CO
a.	A cable of uniform cross-sectional area is stretched between two	10	1
	supports 100 m apart with one end 4 m above the other end as shown in		
	Fig. The cable is loaded with a UDL of 10 kN/m and the sag of cable		
	measured from higher end is 6 m. Find the horizontal tension in the		
	cable. Also find the maximum tension in the cable.		
	VA		
	H L_1 L_2 V		
	A 6 m 4 m H	1	にレ
		2	
		5.	
	10 kN/m	5	
		*	
	$l = 100 \text{ m} \longrightarrow l$		
b.	Derive the expression for Length of the Cable if Both ends are at the	10	1
	Same level.		
	.05		
4.	Attempt any <i>one</i> part of the following:		
0 10	Question	Marks	CO

Attempt any one part of the following: 4.

Q no.	Question 2	Marks	CO
a.	Explain in detail about method of substitution and method of tension	10	2
	coefficient with examples.		
b.	Find the forces in the members of the given truss.	10	2
	20 kN 1 2 70 kN 3 4 3 m		

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Determine the vertical deflection at point C in the frame shown in Fig.	10	3
	Given $E = 200 \text{ kN/mm2}$ and $I = 30 \times 106 \text{ mm4}$.		

Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS

M.MARKS: 100

	P = 1 kN $P = 1 kN$ C $P = 1 kN$ C A B C A A A A A A A A		
b.	Determine the deflection and rotation at the free end of the cantilever beam shown in Fig. Use unit load method. Given $E = 2 \times 105 \text{ N/mm}^2$, and I = $12 \times 106 \text{ mm}^4$.	10	3
	A 20 kN 20 kN C 20 kN		

Attempt any one part of the following: 6.

Q no.	Question	Marks CO
a.	What are the propositions used for several point loads moving over a simply supported beam? Explain and prove propositions1.	10 4
b.	A Uniformly distributed load of intensity 30 kN/m crosses a simply supported beam of span 60 m from left to right. The length of UDL is 15m. Find the value of maximum bending moment for a section 20 m from left end. Find also the absolute value of maximum bending moment and shear force in the beam.	
7.	Attempt any <i>one</i> part of the following:	
~		1 1 00

0

7. Attempt any one part of the following:

Q no.	Question	Marks	CO	
a.	Show that the parabolic shape is a funicular shape for a three hinged	10	5	
	arch subjected to a uniformly distributed load over its entire span.			
b.	A three hinged parabolic arch of 60 m span and a rise of 12 m are subjected to a uniformly distributed load of 30 kN/m intensity over its left half portion and point load of 120 kN at right quarter span. Calculate the bending moment, normal thrust and radial shear at a section 15 m from the left support.	10	5	