

Subject Code: KCE053

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

OPEN CHANNEL FLOW

TIME: 3 HRS

M.MARKS: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x 10	= 20	
Q no.	Question	Marks	CO	
a.	Differentiate between prismatic & non prismatic channel.	2	1	
b.	What are the various types of flow in open channels?	2	1	
c.	Define critical depth and normal depth.	2	2	·
d.	Write the differences between GVF & RVF.	2	2	
e.	Differentiate between jump and surge.	2	3	
f.	Define energy dissipater.	2	3	
g.	What is spatially varied flow?	2	4	
h.	Define bottom racks.	2	4	
i.	Which factor affect the flow through culvert?	2	5	
j.	Explain constrictions.	2	5	\mathcal{A}
	SECTION B		~	3
2.	Attempt any <i>three</i> of the following:	10x3=	30	_
a.	Derive the relationship between critical depth and specific energy for	10	1	

SECTION B

2 Attempt any three of the following

4 .	Attempt any unce of the following.	1013	50
a.	Derive the relationship between critical depth and specific energy for	10	1
	rectangular channel.	S.	
b.	Explain the standard fourth order Runge-Kutta method to solve the basic	\mathbf{v}_{10}	2
	differential equation of GVF.	*	
c.	Discuss positive and negative surges in open channels, elucidating their	10	3
	causes, effects, and mitigation strategies.		
d.	Explain the fundamental principles of Spatially Varied Flow (SVF) and	10	4
	its significance in open channel hydraulics. Provide two examples		
	illustrating real-world scenarios where SVF occurs.		
e.	What is the importance of velocities for culvert design? Explain with	10	5
	neat sketch main components of culvert.		

SECTION C

3.	Attempt any <i>one</i> part of the following:	10x1 =	10
a.	Explain most efficient channel and find the expression for most efficient	10	1
	rectangular channel section.		
b.	Explain flow properties of open channel flow in details.	10	1

V

4.	Attempt any <i>one</i> part of the following:	10x1=10	
a.	Explain the equation governing gradually varied flow (GVF) in open	10	2
	channels. Discuss the assumptions and limitations associated with this		
	equation.		
b.	A rectangular channel 7.5m wide has a uniform depth flow 2.0 m and	10	2
	has a bed slope of 1 in 3000. If due to weir constructed at a downstream		
	end of the channel, water surface is raised by 0.75m, determine the water		
	surface slope with respect to horizontal at the section. Assume		
	manning's coefficient = 0.02 .		

1 | Page

Printed Page: 2 of 2

Roll No:

BTECH

(SEM V) THEORY EXAMINATION 2023-24

OPEN CHANNEL FLOW

TIME: 3 HRS

PAPER ID-310855

M.MARKS: 100

5.	Attempt any <i>one</i> part of the following:	10x1=	10
a.	Explain the characteristics of rapidly varied flow, emphasizing the	10	3
	conditions under which hydraulic jumps occur in open channels.		
b.	In a hydraulic jump occurring in a rectangular channel of 3 m, the	10	3
	discharge is 7.5 m^{3}/s and the depth before the jump is 0.28 m. Estimate		
	sequent depth and energy loss in the jump.		

6.	Attempt any one part of the following:	10x1=	10	_
a.	A rectangular channel 2 m wide carries a discharge of $3.5 \text{ m}^3/\text{s}$ at a	10	4	
	Froude number of 0.30. A 2 m long parallel longitudinal bars bottom			
	rack having $E = 0.2$ is provided at a section. Super critical flow is known			
	to occur over the rock. Estimated the discharge diverted out.			
b.	Discuss the classifications and solutions associated with Spatially	10	4	
	Varied Flow (SVF). Provide two distinct classifications and explain how			
	these classifications impact the behavior of flow profiles in open			0
	channels.			Br
			0	

7.	Attempt any <i>one</i> part of the following:	10x1₹	10
a.	Explain briefly the transitions of subcritical and supercritical flow.	10	5
b.	Explain the significance of non-prismatic channel sections in open	10	5
	channel hydraulics. Discuss two design considerations specific to non-	5	
	prismatic sections, emphasizing their implications for flow	*	
	characteristics.		