

				Sub	ject	Coc	de: I	BOE	308
Roll No:									

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2023-24 ANALOG ELECTRONICS CIRCUITS

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	SECTION A Attempt <i>all</i> questions in brief.	2 x 7 =	14				
Q no.	Question Question	Marks	CO				
a.	Explain the concept of bias stability in amplifier circuits.	2	1				
b.	Define transconductance amplifier	2	1				
c.	What is a cascode amplifier?	2	2				
d.	Name two types of RC oscillators and two types of LC oscillators.	2	3				
e.	What is the Barkhausen criterion?	2	3				
f.	Explain the terms CMRR and ICMR in the context of a differential amplifier.	2	4				
g.	Differentiate between inverting and non-inverting amplifiers.	2	5				
	SECTION B	1	•				
2.	Attempt any three of the following:	$7 \times 3 =$	21				
a.	Describe various biasing schemes for BJT. Discuss the advantages and disadvantages of each biasing scheme	7	1.				
b.	Explain the concept of feedback in amplifiers and analyze various feedback topologies	720	2				
c.	Explain the working of a tank circuit. Also derive the frequency of oscillation and condition of gain to get sustained oscillations for Colpitts oscillator.	72	3				
d.	Analyze the V-I characteristics, output resistance, minimum sustainable voltage, and maximum usable load of a current mirror.	7	4				
e.	Describe the operation of Schmitt triggers, and discuss their applications						
3.	SECTION C Attempt any <i>one</i> part of the following:	7 x 1 =	7				
a.	What is small signal analysis, and why is it important in amplifier design?	7	1				
b.	Define different biasing schemes and techniques for FET amplifier	7	1				
4.	Attempt any one part of the following:	7 x 1 =	7				
a.	Discuss high-frequency transistor models and analyze the frequency response of single-stage amplifier	7	2				
b.	Evaluate the effects of feedback on gain, bandwidth, stability, gain margin, and phase margin in amplifiers.	7	2				
5.	Attempt any one part of the following:	7 x 1 =	7				
a.	Explain the operation of non-sinusoidal oscillators and their applications in generating waveforms such as square waves and triangle waves.	7	3				
b.	Review the basic concept of oscillators and explain the Barkhausen criterion for oscillation.	7	3				

				Sub	ject	Coc	le: I	BOE	308
Roll No:									

Printed Page: 2 of 2

BTECH (SEM III) THEORY EXAMINATION 2023-24 ANALOG ELECTRONICS CIRCUITS

TIME: 3HRS M.MARKS: 70

6.	Attempt any one part of the following:	$7 \times 1 = 7$	
a.	Describe the basic topology of a current mirror and its variants.	7	4
b.	Explain the structure and principle of operation of a differential amplifier.	7	4

7.	Attempt any <i>one</i> part of the following:								
a.	Describe the operation of precision rectifiers, and discuss their	7	5						
	applications in signal processing and waveform generation.								
b.	Define the following with reference to filter: (i) Pass Band (ii) Stop								
	Band (iii) Roll-off rate (iv) Cut-off frequency								