

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2023-24 FLUID MECHANICS & FLUID MACHINES

TIME: 3HRS

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	С
			0
a.	What is specific weight and specific gravity?	2	1
b.	Define the terms C_c , C_v in case of orifice meter.	2	1
c.	Differentiate between laminar and turbulent flow.	2	2
d.	Differentiate between rotational and irrotational flow.	2	2
e.	What is the expression of Reynold number?	2	3
f.	What is the Mechanical efficiency of a Pump?	2	4
g.	What is slip in case of reciprocating pump?	2	5

SECTION B

2. Attempt any *three* of the following:

2.	Attempt any <i>three</i> of the following:			2
a.	What is the use of venturimeter? Also derive the expression of discharge	7	1	5
	through venturimeter.			Þ
b.	Explain the principal of continuity equation. Also explain steady and unsteady	7	2	
	flow.	6.1		
с.	The velocity distribution in the boundary layer is given by	7	3	
	$u/U = 2(y/\delta) - (y/\delta)^2$			
	Where, δ = boundary layer thickness.			
	Calculate the following:			
	Displacement thickness			
	Momentum thickness			
d.	Derive an expression for the work done per second by water on the runner of	7	4	
	the Pelton wheel using velocity triangles and also find the expression for			
	maximum efficiency.			
e.	Explain the working of air vessel with neat diagram? What is the importance of	7	5	
	the air vessel for reciprocating pump?			

SECTION C

Attempt any *one* part of the following: 3.

a.	Calculate the dynamic viscosity of oil, which is used for lubrication between a	7	1
	square plate of size 0.8m x 0.8m and an inclined plane with angle of inclination		
	30°. The weight of square plate is 300m and it slides down the inclined plane		
	with a uniform velocity 0.3m/s. The thickness of the oil film is 1.5mm.		
b.	Explain the concept of viscosity. Also explain the impact of temperature on	7	1
	viscosity.		

4. Attempt any *one* part of the following:

a.	Water flows through a pipe AB 1.2 m diameter at 3m/s and then passes through a pipe BC 1.5m diameter. At C the pipe branches, Branch CD is 0.8 m in diameter and carries one third of the flow in AB. The flow velocity in branch CE is 2.5m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.	7	2
b.	Derive an expression for continuity equation in three dimensions for Cartesian	7	2

1 | Page

BTECH

Roll No:

(SEM III) THEORY EXAMINATION 2023-24 **FLUID MECHANICS & FLUID MACHINES**

TIME: 3HRS

M.MARKS: 70

	co-ordinate which is applicable for steady and incompressible.		
5.	Attempt any one part of the following:		
a.	What do you mean by boundary layer separation? What is the effect of pressure gradient on boundary layer separation?	7	3
b.	Derive an expression of velocity distribution when water is flowing in a circular pipe.	7	3
6.	Attempt any one part of the following:		
a.	A reaction turbine works at 450 r.p.m. under a head of 120m. Its diameter at inlet is 1.2m and the flow area is 0.4m ² . The angle made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocities. Determine: (i) The volume flow rate (ii) The power developed	7	4
b.	Explain the phenomenon of cavitation in case of turbine. Also write the method to avoid it.	7	4
7.	Attempt any one part of the following:		
a.	What are the difference between centrifugal pump and reciprocating pump?	7	5

a.	What are the difference between centrifugal pump and reciprocating pump?	7	5	೧ .
b.	Draw an indicator diagram for reciprocating pump. Prove that work done by	7	5	5
	the pump is proportional to the area of the indicator diagram.			
	CRAMP is proportionar to the area of the indicator angrain.	53.20		
	16-03-202A			

PAPER ID-311412