

BTECH

(SEM III) THEORY EXAMINATION 2023-24

DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

	SECTION A			
1.	Attempt <i>all</i> questions in brief.	2 x 7 =	= 14	
Q no.	Question	Marks	C	
			0	
a.	Determine the greatest lower bound and least upper bound of the set {2,	2	1	
	[3, 6], if they exist, in the Poset (D24, /).			
b.	Express power set of each of these sets.	2	1	
	$1) \{\emptyset, \{\emptyset\}\}$			
	2) $\{a, \{a\}\}$			
c.	Investigate whether the function $f(x) = x^2 - 1$ is injective or not for	2	2	
	f: $R \rightarrow R$.			
d.	Express $E(x, y, z) = xy + y'z$ into its complete sum-of-products form.	2	2	
e.	Construct inverse of the following statement "If I wake up early	2	3	
	in the morning, then I will be healthy."			0
f.	Show that identity element is unique in a group.	2	4	st
g.	Compare Euler circuit and Hamiltonian circuit.	2	5	
			SV	
	SECTION B	<u></u>		
2.	Attempt any <i>three</i> of the following:	7 x 3 =	- 21	

SECTION A

SECTION B

2.	Attempt any <i>three</i> of the following:	7 x 3 =	- 21
Q no.	Question	Marks	CO
a.	Construct the Hasse Diagram for $(P(S), \subseteq)$ where $P(S)$ is a power	•7	1
	set defined on set $S = \{a, b, c\}$. Determine whether it is a Lattice		
	or not.		
b.	Solve the following Boolean functions using K-map:	7	2
	(i) $F(A,B,C,D) = \sum (m0,m1,m2,m4,m5,m6,m8,m9,m12,m13,m14)$		
	(ii) $F(A,B,C,D) = \sum (0,2,5,7,8,10,13,15)$		
c.	Show the validity of the following argument:	7	3
	hypotheses: "It is not sunny this afternoon and it is colder than m		
	yesterday. We will go swimming only if it is sunny. If we do not go		
	swimming, then we will take a canoe trip. If we take a canoe trip, then		
	we will be home by sunset.		
	conclusion: "We will be home by sunset."		
d.	Let $G = \{1, -1, i, -i\}$ with the binary operation multiplication be	7	4
	an algebraic structure, where $i = \sqrt{-1}$ then determine whether G is		
	an Abelian group. Also if G is cyclic Group, then determine the		
	generator of G.		
e.	Explain Pigeon hole principle. Describe generalized form of Pigeon hole	7	5
	principle. If 6 colors are to paint 37 homes. Show that at least 7 of them		
	will be of same color.		

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2023-24

DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS

M.MARKS: 70

SECTION C

<u>3.</u>	Attempt any <i>one</i> part of the following:

3.	Attempt any one part of the following:	7 x 1 =	= 7
Q no.	Question	Marks	СО
a.	Let R be a binary relation on the set of all strings of 0 and 1 such that R = $\{(a,b): a \text{ and } b \text{ have same number of } 0's\}$. Show that whether R is	7	1
	reflexive, symmetric, transitive or a partial order relation.		
b.	Show that (D42, /) is lattice. Compare the distributive and	7	1
	complemented lattice with example.		

4.	Attempt any <i>one</i> part of the following:	7 x 1 =	= 7	
Q no.	Question	Marks	CO	
a.	Solve the following Boolean function using K-map:	7	2	
	F(A,B,C) = (1,2,5,7) and $D(0,4,6)$ using SOP.			
b.	If f: R \rightarrow R, g : R \rightarrow R and h: R \rightarrow R defined by f(x) = 3x ² +2, g(x) =7x-5	7	2	
	and $h(x) = 1/x$. Compute the following composition functions.			
	(i) (fogoh)(x) (ii) (gog)(x) (iii) (goh)(x)			
			1	5
5.	Attempt any <i>one</i> part of the following:	7 x 1 =	-7	<u>.</u>
Q no.	Question	Marks	CO	
			a.	r -

Attempt any one part of the following: 5.

••	recempt any one part of the following.	, ,,	
Q no.	Question	Marks	CO
a.	Test the validity of the following argument.	7	3
	"If there was a ball game, then traveling was difficult. If they arrived on	S.	
	time, then traveling was not difficult. They arrived on time. Therefore,	\mathbf{O}^{-}	
	There was no ball game."	×	
b.	Describe \exists and \forall Quantifiers with example. "There is someone who got	7	3
	an A in the course" convert this sentence into predicate logic using		
	quantifiers. Prove the following argument. All man are mortal Socrates		
	is a man. Therefore, Socrates is mortal.		

6.	Attempt any <i>one</i> part of the following:	7 x 1 =	= 7
Q no.	Question	Marks	CO
a.	Describe Algebraic structure, semigroup, monoid and group. Also explain the relationship among them.	7	4
b.	Consider group G = {1, 2, 3, 4, 5, 6} under multiplication modulo 7. (a) Construct the multiplication table of G. (b) Compute 2^{-1} , 3^{-1} , 6^{-1} (c) Compute the orders and subgroups generated by 2 and 3. (d) Is G cyclic?	7	4

7.	Attempt any one part of the following:	7 x 1 =	= 7
Q no.	Question	Marks	CO
a.	Compare bipartite and complete graph with example. Draw K _{3,4} and K ₅ .	7	5
	Explain why these two graphs are not planar.		
b.	Show that K _{3,3} satisfies in equality $ E \leq 3 V - 6$, but it is non-	7	5
	planar.(V=No. of Vertices, E=No. of Edges, R=No. of Regions)		