

Roll No:

Subject Code: BAS302

BTECH

(SEM III) THEORY EXAMINATION 2023-24

SECTION A

MATHEMATICS-III

TIME: 3HRS

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

1.	Attempt <i>all</i> questions in brief. 2	x 7 = 14									
Q no.	Question	Marks	CO								
a.	Solve the Partial differential equation $pq = 3p + 4q$	2	1								
b.	Tell the classification of the following partial differential equation	2	2								
	$4 \frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial t} + 6 \frac{\partial^2 u}{\partial t^2} = 0$										
c.	State convolution theorem on Fourier transformation	2	2								
d.	For a Binomial distribution, mean is 6 and variance is 4. Determine q.	2	3								
e.	If Regression Coefficients are 0.5 and 0.5, what would be the value of coefficient	2	3								
	of correlation?		C								
f.	Find the missing value of the following table:	2	4,3								
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	2.								
g.	Write the formula of Trapezoidal rule.	2	5								
	SECTION B	5									

SECTION B

Attempt any <i>three</i> of the following: 7 x										
Examine the partial differential equation										
$(D^2 - 2DD' + D'^2)z = \cos(2y - 3x)$										
Determine the solution of one dimensional heat equation with the given	7	2								
conditions $u(0, t) = 0, u(l, t) = 0, u(x, 0) = x.$										
From the following data, calculate the equations of line of regression of y	7	3								
on x and x on y.										
x 6 2 10 4 8										
y 9 11 5 8 7										
Find a positive value of $(17)^{1/3}$ correct to four decimal places by Newton's	7	4								
Raphson method.										
Use fourth order Runge –Kutta method to find $y(0.2)$ solving										
$\frac{dy}{dx} = 1 + y^2; y(0) = 0$										
	Attempt any three of the following:7 :Examine the partial differential equation $(D^2 - 2DD' + D'^2)z = cos(2y - 3x)$ 7 :Determine the solution of one dimensional heat equation with the given conditions $u(0, t) = 0, u(l, t) = 0, u(x, 0) = x$.10From the following data, calculate the equations of line of regression of y on x and x on y.11 x 62 y 9 y 11 y 9 y 11 y 9 y 10 y 11 y 10 <td< td=""><td>Attempt any three of the following:$7 \ge 3 = 21$Examine the partial differential equation $(D^2 - 2DD' + D'^2)z = cos(2y - 3x)$7Determine the solution of one dimensional heat equation with the given conditions$u(0, t) = 0, u(l, t) = 0, u(x, 0) = x.$7From the following data, calculate the equations of line of regression of y on x and x on y.7x62$10$48y911$5$87Find a positive value of $(17)^{1/3}$ correct to four decimal places by Newton's Raphson method.Use fourth order Runge -Kutta method to find $y(0.2)$ solving 7</td></td<>	Attempt any three of the following: $7 \ge 3 = 21$ Examine the partial differential equation $(D^2 - 2DD' + D'^2)z = cos(2y - 3x)$ 7Determine the solution of one dimensional heat equation with the given conditions $u(0, t) = 0, u(l, t) = 0, u(x, 0) = x.$ 7From the following data, calculate the equations of line of regression of y on x and x on y.7 x 62 10 48 y 911 5 87Find a positive value of $(17)^{1/3}$ correct to four decimal places by Newton's Raphson method.Use fourth order Runge -Kutta method to find $y(0.2)$ solving 7								

SECTION C

3.	Attempt any <i>one</i> part of the following: 7	x 1 = 7	
a.	Solve the Partial differential equation of $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = x^2 y^2$	7	1
b.	By using Charpit's method to evaluate the solution of $px + qy = pq$	7	1

1 | Page

M.MARKS: 70

PAPER ID-311271

Subject Code: BAS302

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2023-24

MATHEMATICS-III

TIME: 3HRS

M.MARKS: 70

4.	Attempt any <i>one</i> part of the following: 7 2	x 1 = 7	
a.	Determine Fourier Sine transform of the function $F(x) = \frac{e^{-ax}}{x}$, a>0.	7	2
b.	Solve the following partial differential equation by method of separation of variables: $\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} + 2u = 0$. $u(x, 0) = 10e^{-x} - 6e^{-4x}$.	7	2

5.	Attempt any <i>one</i> part of the following: 7										
a.	Use the method of least squares to fit the curve y=a+bxfor the following									3	1
	data:										
		Х	1	2	3	4	5				
		у	12	14	15	19	22				
b.	Compute skewnes	s and	d Kurt	osis,if th	ne first f	four mo	oment	s of a frequency	7	3	ุโ
	distribution about			b							
						·V					•

6.	Attempt any one p	oart of	the f	ollowii	ng:	,/		7 2	x 1 = 7	
a.	Find a real root of th	ne follo	wing e	equation	ns by tl	ne metho	d of t	false position correct	70	4
	to four decimal p	places :	$x^3 - 5$	x + 3 =	0				6.	
				0X	*					
b.	Using Newton's div	ided di	fferen	ce form	ula. Ca	lculate th	ne val	lue of f(6) from the	7	4
	following data:		\mathbf{O}							
		х	1	4	7	9	12			
		f(x)	10	22	32	43	56	0		
	•							NO.		-

7.	Attempt any <i>one</i> part of the following:	7 x 1 = 7	
a.	Solve the system of equations using gauss Seidel method.	7	5
	2x+10y+z=51, 10x+y+2z=44, x+2y+10z=61.		
b.	Evaluate $\int_{-\infty}^{6} \frac{dx}{dx}$ by using Simpson's one – third rule.	7	5
	$J_0 1 + x^2$		
<u>.</u>		L	