

	Printed Page: 1 of 2												
							Sul	bject	t Co	de:]	BAS	5103	,
Roll No:													

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-I

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.		
Q no.	Question	Marks	C O
a.	Find the product and sum of the eigen values for $A = \begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$.	2	1
b.	Find all symmetry in the curve $y^2(a^2 + x^2) = x^2(a^2 - x^2)$.	2	2
c.	Calculate the error in R if $E = RI$ and possible errors in E and I are 30% and 20% respectively.	2	3
d.	Determine the value of $\Gamma \frac{1}{4} \Gamma \frac{3}{4}$.	2	4
e.	Prove that $B(p,q) = B(p + 1,q) + B(p,q + 1)$	2	4
f.	Prove that $\vec{A} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$ is irrotational.	2	5
g.	Find a unit normal vector to the surface $xy^3z^2 = 4$ at the point $(-1, -1, 2)$.	2	5

SECTION B

2.	Attempt any three of the following:	7 x 3	₹21
	Solve the system of homogenous equations:	7	
a.	$x_1 + x_2 + x_3 + x_4 = 0$, $x_1 + 3x_2 + 2x_3 + 4x_4 = 0$,	. < 7 ·	1
	$2x_1 + x_3 - x_4 = 0$	9	
	If $u = y^2 e^{y/x} + x^2 \tan^{-1} \left(\frac{x}{y}\right)$, show that	•	
b.	$(i) x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$	7	2
	(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2u$.		
c.	Expand $f(x, y) = e^x \cos y$ about the point $\left(1, \frac{\pi}{4}\right)$ by Taylor's sereies.	7	3
	Evaluate the integral $\iint_D (y-x)dxdy$; by changing the variables, D:		
d.	Region in xy-plane bounded by the lines	7	4
	$y-x=-3, y-x=1, y+\frac{1}{3}x=\frac{7}{3}, y+\frac{1}{3}x=5.$		
	Find the directional derivative of $f(x, y, z) = e^{2x} \cos yz$ at $(0, 0, 0)$ in		
e.	the direction of the tangent to the curve	7	5
	$x = a \sin \theta$, $y = a \cos \theta$, $z = a\theta$ at $\theta = \frac{\pi}{4}$.		

SECTION C

3.	Attempt any one part of the following:	$7 \times 1 =$	= 7
a.	Determine eigen vectors for the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$.	7	1
b.	Determine A^{-1} , A^{-2} and A^{-3} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ using Cayley-Hamilton theorem.	7	1

Printed Page: 2 of 2
Subject Code: BAS103
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-I

TIME: 3HRS M.MARKS: 70

4	4.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	- 7
	a.	If $y = \cos(m \sin^{-1} x)$ then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$. Also find $(y_n)_0$.	7	2
	b.	If $z = f(x, y)$, $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$ then show that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$	7	2

5.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	- 7
a.	If $u^3 + v^3 = x + y$, $u^2 + v^2 = x^3 + y^3$, then show $\frac{\partial(u,v)}{\partial(x,y)} = \frac{y^2 - x^2}{2uv(u-v)}$.	7	3
b.	The pressure P at any point (x, y, z) in space is $P = 400 xyz^2$. Find the highest pressure at the surface of a unit sphere $x^2 + y^2 + z^2 = 1$ using Lagrange's method.	7	3

6.	Attempt any one part of the following:	7 x 1 =	= 7
a.	Find the volume of the solid bounded by the coordinate planes and the surface $\left(\frac{x}{a}\right)^{1/2} + \left(\frac{y}{b}\right)^{1/2} + \left(\frac{z}{c}\right)^{1/2} = 1$.	7	4
b.	Prove that $B(m,n) = \frac{\Gamma m \Gamma n}{\Gamma m + n}$.	7	4
		0	X

7.	Attempt any one part of the following:	7 x 1 =	7
	Applying Gauss Divergence theorem, evaluate	$\mathcal{C}_{\mathcal{C}}$	
a.	$\iint_{S} [e^{x} dy dz - y e^{x} dz dx + 3z dx dy], \text{ where S is the surface of the}$	7	5
	$cylinder x^2 + y^2 = c^2, 0 \le z \le h.$		
1.	Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and hence	7	5
b.	show that $\nabla^2 \left(\frac{1}{r}\right) = 0$.	/	5
	(2)·		
	20:		
	3		
	1 1 1 1 1 1 1 1 1 1		