Printed Pages:02					
Paper Id:	238248				

	Sub Code:KCS-402									
Roll No.										

B.TECH (SEM IV) THEORY EXAMINATION 2022-23 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

- (a) What do you understand by grammar?
- (b) What do you mean by ε-Closure in FA?
- (c) State Arden's Theorem.
- State Kleen's Theorem. (d)
- Derive the CFG for (a+b)*. (e)
- (f) Explain Chomsky Hierarchy.
- Explain pumping lemma for context free language. (g)
- (h) Draw the graphical representation for PDA.
- (i) Explain Halting Problem of Turing Machine.
- Explain Linear bounded Automata. (j)

SECTION E

2. Attempt any three of the following:

- (a) Construct a DFA for ternary number divisible by 4.
- (b) Determine the FA accepted by the language described by the regular expression: (0+1)*0(0+1)*0(0+1)* over the alphabet $\{0,1\}$ and also mention the accepted language
- (c) Consider the grammar with following production rules: S→ABD | AC
 - A→aA | bAa |a
 - B→bbA | aB | AB
 - C→aCa laD
 - $D \rightarrow aD \mid bC$
 - Convert the above grammar into Chomsky Normal Form.
- (d) Design a PDA for the language L= $\{WW^T | W = (a+b)^*$
- (e) Write short notes on: i) Church's Thesis

ii) Recursive and Recursive Enumerable Language

SECTION C

3. Attempt any one part of the following:

Construct a DFA equivalent to the NFA

QP23EP2 290 | 05-08-2023 13:27:33 | 117.55.242.132

10x1=10

10x3=30

 $2 \ge 10 = 20$

Total Marks: 100

(b) Construct a minimum state automata equivalent to a DFA whose transition table is as follows where q3 and q4 are final state.

State/ Σ	Input			
	А	b		
→ Q0	Q1	Q2		
Q1	Q4	Q3		
Q2	Q4	Q3		
Q3	Q5	Q6		
Q4	Q7	Q6		
Q5	Q3	Q6		
Q6	Q6	Q6		
Q7	Q4	Q6		

4. Attempt any *one* part of the following:

10x1 = 10

10x1 = 10

(a) Find the regular expression corresponding to the finite automata given below:

(b) State pumping lemma for regular language. Prove that the language $L = \{a^p \mid p \text{ is } p \}$ prime} is not regular.

5. Attempt any one part of the following:

- (a) A context free grammar G is given by the following productions:
 - $E \rightarrow E + E | E E | E * E | E^{E} | N$

N→0|1|2|3|4|5|6|7|8|9

Determine whether the grammar G is ambiguous or not.If ambiguous then construct an unambiguous grammar equivalent to G.

Explain Closure properties of regular language. (b)

Attempt any one part of the following: 6.

- Design a two stack PDA for the language $L=\{a^n b^n c^n | n \ge 1\}$ (a)
- Generate CFG for the given PDA M is defined as (b) M = ({q0, q1}, {0,1} {x, z0}, δ , q0, z0, q1) where δ is given as follows: δ (q0,1, z0) = (q0, xz0) $\delta(q0,1,x) = (q0,xx)$

 δ (q0,0, x) = (q0, x) $\delta(q0, \varepsilon, x) = (q1, \varepsilon)$ $\delta(q_1, \varepsilon, x) = (q_1, \varepsilon)$

-(a1)

$$\delta(q_1, 0, x) = (q_1, xx)$$

 $\delta(q_1, 0, x) = (q_1, xx)$

$$δ (q1,0, z0) = (q1, ε)$$

7. Attempt any one part of the following:

- (a) Design a Turing Machine for the language: $L = \{a^n b^n c^n | n \ge 1\}$
- (b) Write short notes on:
 - (i) Variants of Turing Machine
 - (ii) Post Correspondence problem
 - (iii) Universal Turing Machine

10x1 = 10

10x1 = 10